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Efficient Solution For Electromagnetic Scattering 

Using the Dual-Surface Magnetic-Field Integral 

Equation For Bodies of Revolution 

1    INTRODUCTION 

Conventional solutions of the magnetic-field integral equation (MFIE) fail to produce 
a unique solution at frequencies equal to the resonant frequencies of the interior cavity.1'2 

These spurious resonances severely corrupt the numerical solution of the MFIE. Yaghjian3 

proved that the original MFIE allows spurious resonances at these frequencies because 
it does not restrict the tangential electric field to zero on the surface of the scatterer. 
Tobin, Yaghjian, and Bell(Woodworth)4 derived the dual-surface magnetic-field integral 
equation (DMFIE) and applied it to a three-dimensional, multi-wavelength, perfectly 
conducting body. This numerical solution showed that the DMFIE did indeed eliminate the 
spurious resonances associated with the interior cavity modes. The proof of uniqueness and 
derivation for both the dual-surface electric-field integral equation (DEFIE) and magnetic- 
field integral equation appeared in Woodworth and Yaghjian.5 

Mautz and Harrington6 used the combined-field integral equation solution (CFIE) to 
eliminate the spurious resonances associated with the interior cavity modes. The CFIE, 

(Received for publication 5 July 1995) 
'Murray, F.H. (1931) Conductors in an electromagnetic field, Am. J. Math., 53:275-288. 
2Maue, A.W. (1949) On the formulation of a general scattering problem by means of an integral equation, 

Zeitschrift fur Physik, 126(7/9):601-618. 
3 Yaghjian, A.D. (1981) Augmented electric and magnetic field integral equation, Radio Science, 16:987-1001. 
4Tobin, A.R., Yaghjian, A.D., and Bell M.M. (1987) Surface integral equations for multi-wavelength, arbitrarily 

shaped, perfectly conducting bodies, Digest of the National Radio Science Meeting, (URSI), Boulder CO 
5 Woodworth, M.B., and Yaghjian, A.D. (1991) Derivation, application and conjugate gradient solution of the 

dual-surface integral equations for three-dimensional, multi-wavelength perfect conductors, in PIERS-5: Applications of 
the Conjugate Gradient Method to Electromagnetic and Signal Analysis, Sarkar, T.K. and Kong, J.A., eds., Elsevier, 
ch. 4. Also, J. Opt. Soc. Am. A, 11, April 1994. 

6Mautz, J.R. and Harrington, R.F. (1987) H-field, E-field, and combined-field solutions for bodies of revolution, 
Arch. Elecktron. Ubertragungstech. (Electron. Commun.), 32(4):157-164. 



as the name implies, combines the solution of the MFIE with the electric-field integral 
equation (EFIE). Because the CFIE involves the MFIE and the EFIE operators, additional 
programing ability and computer run-time are required than with the original MFIE. 

One application of the CFIE and DMFIE solutions is plane wave scattering from a 
body of revolution. As an alternative to the CFIE, a body of revolution solution was 
formulated using the DMFIE to determine if it was advantageous to use because of 
increased accuracy or decreased computer run-time.7 The body of revolution formulation of 
the DMFIE solution parallels the body of revolution formulation in Mautz and Harrington.6 

However, the numerical solution to the body of revolution DMFIE uses a single pulse 
and impulse approximation for basis and testing functions instead of the triangular basis 
and testing functions used in Mautz and Harrington.6 The CFIE solution requires a 
more complicated set of basis and testing functions because it includes the EFIE. The 
different basis and testing functions are necessary to accurately model the derivative of 
the surface current in the EFIE which is not present in the MFIE. Also, summations 
for the integration use a simple rectangular rule rather than the more complex Gaussian 

quadrature integration scheme. 
The purpose of this report is to present the development of the DMFIE for a perfectly 

conducting body of revolution and its capability for solving electrically large bodies using 
the fast Fourier transform (FFT) and conjugate gradient (CG) methods. Also presented 
is the implementation of the dominant tip current variation required to solve bodies 
with sharp tip-like structures (such as conespheres with half-cone angles less than 20°) 
using the MFIE and DMFIE. Results are presented with and without the FFT and 
CG methods. Comparisons of monostatic radar cross section for the original DMFIE, 
the DMFIE with modified dominant tip current implementation, and measurements are 

presented for various scatterers with tips. 

2    STATEMENT OF PROBLEM 

It is desired to determine the scattered far field from a perfectly conducting body of 
revolution excited by a plane wave. Figure 1 shows the geometry and the coordinate system 
used for the body of revolution, where p, 0, and z are the cylindrical coordinates and t 
and 4> form an orthogonal curvilinear coordinate system on the body of revolution surface 
S. ut and ü^ are orthogonal unit vectors in the t and <f> directions, respectively. Figure 
2 shows the coordinate system for plane wave scattering. kt is the propagation vector for 
the incident plane wave, 9t defines the transmit angle, 0r and <pr are the receiver spherical 
angles at which the scattered far field is observed, and kT is the receiver propagation 
vector, which points from the receiver location to the origin. kt is limited to the xz-plane 
((j)t = 0). Figure 2 shows the unit vectors u% fy, ur

e, and u\ in the 6U y, 0r, and <j>r directions 
respectively. The notation follows basically that of Mautz and Harrington.6 

Considered separately is an incident plane wave (He) defined by 

7 Schmitz   J L. (1991)Dual-Surface Magnetic-Field Integral Solution for Bodies of Revolution, RL-TR-91-139, 
Hanscom AFB.MA, ADA260725. 



Figure 1. Body of Revolution and Coordinate System. 

Hinc = (kt x ü^e nt.\*>-Jk>-f' (1) 

and an incident plane wave {H^) denned by 

Hinc = (~h x ue)e 
t\a~ikt-r' (2) 

where Hinc is the incident magnetic field, f is the position vector from the origin, k is the 
free space wavenumber, and the e?wt time dependence has been suppressed. The incident 
plane wave gives rise to electric currents directed in both the </> and t directions on the 
surface S as well as scattered far fields in the 6r and <f>r directions. 

3    MAGNETIC-FIELD INTEGRAL EQUATION 

3.1    Formulation 

Figure 3 illustrates an arbitrarily shaped perfectly conducting body with a plane wave 
incident on the body. By definition of the scattered magnetic field, 

H(f) = Hsc + Hi} (3) 

For the position vector r not on the surface S 

3 



6 

Figure 2. Plane Wave Scattering by a Conducting Body of Revolution. 

H8C(r) = —V x AsC{r) 
flo 

where 

Asc{r) = ,£ [ -^£>e-W-*1' dS>. 
4TT JS \r - r | 

Substituting for Äsc(f) in Eq. (5), the scattered magnetic field becomes 

(f0 = -±- f J(f')xV^dS' 
4?r JS 

Hsc 

where 

e-jk\f-f'\ 

\r - r 

For r inside the sphere, H{r) equals zero, and thus 

Hac{f) = -HirJf). 

Substituting Hsc(f) from Eq. (8) into Eq. (6) we obtain 

(4) 

(5) 

(6) 

(7) 

(8) 



Hinc(r') 

Einc (f) 

X 

"  Jmc(r') 

Figure 3. Geometry of Perfect Conductor for Plane Wave Scattering. 

-Hinc(f) = ^- f J{?) x Vty dS'     (f inside S). 
47T Js 

As f approaches S from inside the surface, Eq. (9) becomes3 

n x Hinc(r) 
Jfo       1   I fl+jk\r-f\\   _jk{,_r, 

2    +4TT i( 

(9) 

If— f'l3 h x [(f- f') x J(r')]dS"     (10) 

for f on S, where we have used the vector relationship 

J(f') x V'V> = 
1 + jk\f — f'\ 

p;    -./I« e-^-^'Cf-Ox ^(O- (11) 

The outward normal n is defined as n = ü^ x wt. Using the notation in Reference 6 
and letting 

/(f) = ä{jt(f>^) + «;j*(*/.^) (12) 

where wj and w^, are unit vectors in the t' and 0' directions respectively, Eq. (10) expands 
to 



- (z' - z) sin?/] coscj)' - 2pcost/sin2(—)} 

Air 

+        uA 

p'dt' \    &$GJ*{Ü, <f>' + <f>)(z' - z) sin <j>' 

(I!M1 + ^p'dt' C*d<t>'GJt{t',<j>' + ^{[p'smvcosv' (13) 

- p sin v' cos v - (z1 - z) sin v sin v'] sin <f>'} 

+ 0-   / fff'df/  /      #'GJ*(t', (f>' + 0){[(p' - P) COBV 

- (z' - z) sin v] cos 0' + 2p' cos v sin2(—)} j 

h x i?i, 

where 

r_l±JkR -jkR (14) 
G_    M3 

and 

R = J(p-p')2 +(z- z')2 + 4pp'sin2(|). (15) 

In Eq. (13), both n and kt are to be evaluated on S at t and <j>. The angle between ut and 
the z-axis, v, is positive when ut points away from the z-axis and is negative when ut points 
toward the z-axis. The primed variables are functions of if and therefore are evaluated at 

if. 
We want to take advantage of the geometry of the body^of revolution by separating 

the <f> and t dependence of Jt and J,. To accomplish this, Jt and X> are expanded in a 

Fourier series in <f>: 

oo 

J% 0) = £ £®*n* (16) 

n=-oo 

oo 

J*M)= £ä)^ <17) 



AM+ <!>)= E tiiW*™ (18) 

j*(f,^+0)= E^vnW)- (19) 

The uj and ü^ components of Eq. (13) will be evaluated using the orthogonal properties 
of sinusoids and the following integral definition of Bessel functions. 

«ml^ 0jx cos <t>-]m< 

(20) 

for m = 0,±l,±2, 

Rewriting Eq. (13), we have for the ut component of the He incident plane wave 

2        4TT 

//»27T 

dtp'm I ■ tty'e^GUCp'-pJcosi;' 

,^2^'> (2' — 2) sin?/] cos 4/ — 2pcosi/sin (—)} 
Li 

+ 
47T 

/ dt'p'fn{t') f   dfie^'Giz' - z) sin0' 

(21) 

=   -- cos0te*fac08e>f[Jn+1(kpsm6t) + Jn^(kpsm6t)} 

and the u^ component 

2 4TT 
I dt'p'fM 

2?r 

#'ejn^ G[p' sin v COST;' 

p sin 1/ cos U — (z' — z) sin v sin i>'] sin </>'} 

+ ^ J dt'p'ji(t') yo    dfe^GW - p) cos v 

— (z' — z) sinv] cos <fi' + 2p'cost; sin2 (—)} 

=   kejkzcose'{2TT cos u sin 9tjJn{kp sin 0t) - 

sint;cos0t7rjm+1[Jn+i(fcpsin0t) - Jn+1(fcp sin 0t)]}. 
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(23) 

For the H* incident wave we have for the ut component 

M + |! fdt'p'?n(t') f* d<j>'ejn*'G{[(p'-p) cosv' 
2 47T J Jo 

- (z' - z) shW] cos0' - 2p cost/sin2 (—)} 

+ *L [dt'p'jÜt') rd<j)'e^'G{z'-z)sm(j)' 
Alt J Jo 

=   -e>kza*0,jn+1[Jn+i(kp8met) - JB_i(fcpsin0t)] 

and for the «^ component 

^ + — / dt'p'jW) /    d4'^G\p' sin v cos t/ 
2      An J Jo 

- p sin v' cos v-(z' - z) sin u sin t/] sin 0' 

+ If- f dt'p'jtit') r d<t>'e^'G{ [(// - p) cos v (24) 

- (z' - -z) sin v] cos <f>' + 2p' cos v sin2 (—)} 

smvejkzcose<\jn~2Jn+i(kpsm0t) - jnJB_i(fcpsin0f)]- 

The t' and 0' integrations can be converted to direct summations. With the t' integral 
divided into discrete segments, the value of the integrand is evaluated at the center of each 
segment and then summed over the number of f-segments. The 0' integral is divided into 
small patches, again approximating the integrand at the center of each patch. In moment 
method terminology, this equates to using pulse basis functions and unit impulse testing 
functions. The well-behaved condition of the magnetic-field integral equation allows such 
simple basis and testing functions to be used. 

Rewriting Eqs. (21) and (22) with the t' and <£' integrations represented as summa- 

tions, we have 

.t M M 

2 £?1 ^ (25) 

for 1 = 1,2,... 

and 



3rd 

2 

M M 

+ AtJ2 Kf{th tm)jL + &tJ2 K»(th tm)jt = s*(th et) 

for Z = 1,2,...M 

m=l (26) 

where n is the mode number, I is the number of the ^-segment, and m the segment number 
for the t' integration. The first superscript indicates the direction of the current and the 
second superscript indicates the vector component. M is the maximum number of t- and 
t'-segments, and At is the length of the t-segment. 

For a given t(l) and t'(m) the only unknown quantities in Eqs. (25) and (26) are tfn 

and j$. Thus for a given n, t, and £', Eqs. (25) and (26) can be represented as 

■"■li 

Ktt 
-"Ml 

■"■11 

K 4>t 
Ml 

jstt 
A1M 

Ktt 
-"ATM 

K 

K <t>t 
\M 

11 

•"■Afl 

TS4>4> 
■"ll 

r<t>t 
■"MM   -"MI 

K t(j> 
1M 

Ä"' MM 

K \M 

K MM 

- j\' -s\- 

3M 
at 
°M 

3\ Sf 

■<t> 
-3 M . 

G<t> 

(27) 

where K and S are known functions of t, t', <j)', and t and 6t, respectively and the j's are 
the unknown Fourier series coefficients of the current. 

The superscripts of the j and S variables indicate the vector component and the 
subscripts indicate the segment. This square matrix equation can be solved for tfn and j* 
for each n, and the currents can be found from fn and j$ by using Eqs. (16) to (19). 

Evaluating the <fr' integration in Eqs. (21) to (24) at t = t' (p = p' and z = z') yields 
R = 2psm(4>'/2). Therefore, at t = t', the phi integration does not converge. This lack of 
convergence is not due to the magnetic-field integral equation but to our separation of 
the 4>' and t' integrations. To obtain convergence at t = t', one must evaluate the fit' area 
of integration more carefully. In Reference 7, it is shown that the (f>' integration can be 
done properly, when the </>' integration is separated from the t' integration, if the modified 
Green's function 

G 
1 

k3R2R, 
+ 1 

k?R3
a 
[(1 + jkRa)e -jkRa 

1] (28) 

replaces G in Eq. (14), where 

Rc = y/(At/2)* + (p4>'f 

Ra = V
/(At/2)2/4 + GO2 

and At is the size of the t-segment. 

(29) 

(30) 



3.2    Far Field 

To obtain the scattered magnetic far field, let r » r' in Eq. (6) to get 

Hic{f) = JJ^lfxjj(r')e^-iS'. (3D 
4-7rr        Js 

Noting that 

rxu<j, = - cos((/> - 4>')ue + cos 6 sin(</> - 0')^ (32) 

rxüt = sin(0 - <£') sin v'ue + cos 0 cos(0 - </>') sin t/u* (33) 

rr-f' = p' sin 0r cos(</> - </>') + *' cos 0 (34) 

allows Eq. (31) to be written as 

• 7     ihr     pT /»27T 

ff*(f)=~Jfce      /   p'W    #'{JV>O[-cos(0-(/)')] scV 47rr    Jo Jo 

+ J((f>,t)[sm((f)-<f))smv\}eJ w 

and 

HHf)=~Jke3kr fTp'dt' /2*d<//{JV/)[-sin(0-<//)cos0] 
scV 47rr    Jo Jo 

+ Jt{fl>\ t') [-sin 0 cos u' + cos(^ _ ^') cos ö sin u'] } 

jfc[p'sin0cos(0-<0')+z'cas0] 

(35) 

(36) 

where, according to Eqs., (16) and (17) 

oo 

W,0 = E J»^ (37) 
n=-oo 

oo 
(38) 

The superscripts 0 and 0 in Eqs. (35) and (36) designate the component of the scattered 

field. ,    N 
Substituting Eqs. (35) and (36) into Eq. (31) and using Eq. (20), Eq. (35) is rewritten 

as 
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(39) 

H6
sc(f) = ^- /   p'dt' Y, {# (O^e^" V+1 

"" n=-oo 

[JB+1(fep'sin6/) - Jn-iikf/smO)] +jtn{t')e>n*e>k*coa6*änv,jn 

[Jn+l(kp'smO) + J^ikp'Sm0)}} 

and Eq. (36) as 

fli(f) = Z^_  /   p'dt' £ (j£(t')ejnWcoseircos0jn 

J® n=-oo 

[Jn+1(kp'sin 0) - Jn^(kp'sin0)} ^ 

+jtn(t')e
jn<t'ejkz'cosdirjn{2 sin0 cos v'Jn(kp'sin0) - cos0 sin t/j 

[Jn+1(Vsinö) - J^p'sin0)]}). 

The radar cross section a is defined as 

a = lim ^r2^- (41) 
|#inc|2 

For a He incident wave Eq. (41) becomes 

a = lim AlTr2\jSl±Ml (42) 
\Hinc\* 

and for a £fy incident wave Eq. (41) becomes 

^ta^ME+M!! («) 
r^oo IH".    12 |-tJjnc| 

where the first and second superscripts designate the components of the incident and 
scattered fields, respectively. 

For the plane wave incident along the positive z-axis, only the ± 1 modes are needed 
in the Fourier series to represent Jl and J4'. For an incident plane wave off the z-axis, the 
maximum number of modes Nmax was chosen as 

iVmax = (l.l*;rsin0f + 2) (44) 

where r is the maximum radius of the body of revolution measured from the z-axis.8 

8
 Yaghjian, A.D. (1977) Near Field Antenna Measurements on a Cylindrical Surface: A Source Scattering Matrix 

Formulation, NBS Technical Note 696. 
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Figure 4. Geometry of Perfect Conductor for Dual-Surface Magnetic-Field Integral 
Equation. 

Typically five to ten segments per wavelength are used for both the number of t-segments 
and phi-segments. The criterion for the number of phi-segments is based on having square 
patches for the phi integration. Other shaped patches were used, but the results proved 
most accurate for square or approximately square patches. 

4    DUAL-SURFACE MAGNETIC-FIELD INTEGRAL EQUATION 

4.1    Formulation 

The following derivation of the DMFIE closely follows the work on the DMFIE 
presented by Woodworth and Yaghjian.5 The DMFIE can be derived by beginning with 
Eq. (10), the "interior" or "extended" MFIE, which is rewritten here 

-Hinc(f) = ir //(r')xVtydS'       (f   inside   S). 
4?r JS 

(45) 

The current J(r) in Eq. (45) is uniquely determined at every frequency if Eq. (45) is 

satisfied for all f inside S.9 

Figure 4 shows the surface S and a surface Ss parallel to, and some distance S > 0, 

inside of S. 

9 Waterman, P.C. (1965) Matrix formulation of electromagnetic scattering, Proc. IEEE, 53:805-812. 
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By adding an cross Eq. (64) at points r on Ss to the corresponding points on S in 
the original MFIE, one obtains the DMFIE 5: 

h x H0(r) = ^p--hx^i J(r') x V ty0(r, f') dS' (46) 
2 47T ys 

where 

#o(r) = ffjne(r) + aHinc(r- 6h) (47) 

Vto(r, O = V7^) ^') + otiß(r — On, r') (48) 

and, as usual 

p-jk\f-f"\ 

V» = V^r- (49) 
|r — r | 

The DMFIE will have a unique solution for J at all real frequencies if a is imaginary and 
the positive real constant «5 is less than approximately A/2. For the body of revolution 
solution, a was chosen to be j (\/—T), and 6 was selected to equal A/4. 

The existing MFIE solution is easily modified to obtain the DMFIE. Hinc and ip are 
now calculated at both the outer surface and an inner surface some distance 8 inside. This 
requires that computer program be modified to simply evaluate these functions at f—8h 
as well as at f. 

Figure 5 plots the normalized radar cross section, a/na2, in the backscattering 
direction for a perfect electric conducting sphere as computed using the MFIE, the Mie 
series, and the DMFIE. The spurious resonances in the MFIE solution are eliminated by 
the DMFIE, which agrees well with the Mie series. 

5    FFT AND CONJUGATE GRADIENT IMPLEMENTATION 

5.1    FFT Method 

As shown in Eqs. (21) to (24) the expansion of the current into a Fourier series 
allows the decoupling of the ft and t' integrals in the integral equation, and allows the <j>' 
integration to be performed for each term in the Fourier series. The (fJ integration in Eqs. 
(21) to (24) can be rewritten as 

I(n)= /    A{t,t',(t>')Gein4l'd(}>' (50) 
Jo 

where A(t, t', <fi') is the portion of the equation independent of n. Eq. (50) has the form of a 

13 



Figure 5. Backscattering Cross Section Versus ka of a PEC Sphere Computed with the 
Mie Series, MFIE, and DMFIE. 

Fourier transform and can be computed efficiently using a FFT. 10 I(n) must be computed 
at a discrete integer spacing of 1, (i,e. n = 1,2,3,... Nm3X) according to the criteria in Eq. 
(44), and so the FFT must be sampled at discrete intervals Aft = 2-K/m where m is an 
integer. This allows the ft integrations for all of the modes to be calculated simultaneously. 
The use of the FFT then reduces the computational time required to perform the 
integrations but increases the storage required to store the additional information. If the 
Fourier series requires M modes for convergence of the current, it is necessary to solve M 
systems of linear equations each with 2N unknowns. 

5.2    Conjugate Gradient Method 

The conjugate gradient iterative method is an efficient alternative to Gaussian elim- 
ination or LU decomposition for solving the large systems of linear equations, AX = y. 
A version of the CG method, referred to as Case A by Sarkar and Arvas,11 applies to a 
general square matrix A that is not defined to be symmetric, positive or negative definite. 
They start with an initial guess X0 and define 

TZ0 = y - AX0 
(51) 

10 Gedney, S.D. and Mittra, R. (1990) The use of the FFT for the efficient solution of the problem of electromagnetic 
scattering by a body of revolution, IEEE Trans. Antennas Propagat, AP-38:313-322. 

"Sarkar, T.K., and Arvas, E. (1985) On a class of finite step iterative methods (conjugate directions) for the 
solution of an operator equation arising in electromagnetics, IEEE Trans. Antennas Propagat, AP-22:1058-1066. 
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Vo = Go = A*Ko (52) 

and iterate for i = 1,2,... : 

a' = P?uF (53) 

Xt = X_x + aCPi-x (54) 

Ki^Ki-i-OiVi-i (55) 

Qi = A*nt (56) 

llft-ilr 

Vi = Gi + biPi-i (58) 

where ||öo||2 = S, |CJ|
2
 is the inner product of a vector with itself and \CJ\ denotes the 

magnitude of the complex vector element Cj. The symbols X,y,Tl,G, and V are vectors, 
a and b are scalars, and A* denotes the Hermitian conjugate of the matrix A. The CG 
method minimizes ||föj||2, where Hi is the residual vector, and gives a sequence of least 
square solutions (Xi) to AX = y such that the estimate Xt gets closer to X with each 
iteration. Iteration continues until the normalized residual error (e = ||^t||/||iV||) is reduced 
to a chosen value. For the stated problem, X is the vector of the unknown surface currents, 
y is the vector of the incident field, and A matrix represents the operator on the right-hand 
side of Eq. (46). 

The sequence Xi will converge to the exact solution X in a finite number of steps 
for any initial guess so long as the matrix is not singular and the round-off errors are 
negligible. An initial guess of X0 = 0, the null vector, was used. The use of the null vector 
allows the flexibility of stopping the iteration and restarting, using the current estimate 
of the solution as the new initial guess. Restarting eliminates round-off errors but requires 
an additional matrix multiplication, thus slowing convergence and increasing the solution 
run time. 

The radar cross section of two right circular cylinders with equal diameter and length 
was computed using two different values of e, 10"3 and 10~6. The results, in Figures 6 and 
7, show no difference in the radar cross section and so an e = 10~3 was chosen as the cutoff 
value of the normalized residual. 

As stated previously, the CG method in practice converges more rapidly than the 
theoretical limit of iterations. To demonstrate this for a body of revolution, the total 
number of iterations was divided by the total number of modes to obtain an average 
number of iterations for the problem solution. Figure 8 shows the slight increase in the 
average number of iterations required to compute the bistatic radar cross section of a right 
circular cylinder with the same diameter and length. This means that the total number 
of iterations required increases approximately linearly with electrical size of the cylinder. 

15 
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Figure 6   Bistatic Radar Cross Section of a 5A by 5A Right Circular Cylinder with 
Normalized Residual Error = 1(T3 and 10~6; 6t = 90°. 

The CG method was found to converge steadily for the well conditioned DMFIE body of 

revolution solution as seen in Figure 9. 

5.3    Numerical Implementation 

For axial incidence of the plane wave (0t = 0 or 180°), only the ±1 Fourier modes 
are required. For an incidence angle of 0°, the bistatic scattering of a 300A x 300A right 
circular cylinder (6000 unknowns) was computed using Gaussian elimination to solve the 
set of linear equations for five segments per wavelength. The solution required 570 minutes 
of CPU time on the Cray C90 supercomputer and is shown in Figure 10. The size of the 
body was limited by the C90 queue restrictions, not the available RAM. 

Off axis, the maximum number of Fourier modes m is given by Eq. (44). The number 
of unknowns N is proportional to d/X, the electrical arc length along the generating curve. 
Using a right circular cylinder of equal length and width, for each m the matrix fill and 
solution times using Gaussian elimination are proportional to (d/X)? For broadside inci- 
dence m is proportional to d/X so the total matrix and fill solution times are proportional 
to (d/Xy. Using the FFT implementation discussed previously reduces the matrix fill time 
from a (d/X)* to a (d/Xf log2(d/A) functional dependence. The use of the CG iterative 
method allows one to reduce the (d/X)4 solution time to a (d/Xf solution time. This means 
that the total computer time required for the body of revolution solution is asymptotically, 
for large d/X, proportional to (d/Xf for axial incidence and (d/Xf log2(d/A) for broadside 
incidence. The FFT requires an increased amount of computer storage, but this is the 
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Figure 7. Bistatic Radar Cross Section of a 10A by 10A Right Circular Cylinder with 
Normalized Residual Error = 1(T3 and 10"6; 6t = 90°. 

trade-off one must tolerate to save computer time. The bistatic scattering of a 20A x 20A 
right circular cylinder was computed at broadside incidence (9t = 90 degrees). The size of 
the cylinder was limited by the available RAM on the Cray C90. The solution (Figure 11) 
required 10 minutes of CPU time for Gaussian elimination with no FFT, 3 minutes for 
Gaussian elimination with the FFT and approximately 2 minutes for the CG method 
with the FFT. Figure 12 shows the CPU time versus the cylinder radius for right circular 
cylinders with the same diameter and length using the FFT to decrease fill-time, CG to 
decrease solution time, and using strictly Gaussian elimination to reduce matrix solution 
time. The reduction of total solution time of electrically large bodies by the FFT and CG 
method is clearly demonstrated. 
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Figure 11. H-Plane Bistatic Radar Cross Section of a 20A by 20A Right Circular 
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6    MODIFICATION OF THE DMFIE FOR BODIES WITH SHARP TIPS 

6.1    Formulation 

It is well documented that the original MFIE and thus the DMFIE degenerate toward 
an underdetermined system of linear equations for infinitesimal thin bodies.5-12.13.14-15-16 

Reference 15 describes the numerical implementation of the MFIE for an extremely thin 
body, a metallic disk with a thickness of 1CT5A. Reference 5 compares the measured and 
MFIE-computed values of the E- and H-plane RCS's for a perfectly conducting circular 
disk with a radius of 2A and a thickness of A/20. Reference 14 states that the MFIE is not 
applicable for thin or open bodies but does not define what the criterion is for a thin body. 
The claim that the MFIE is "useless for infinitely thin scatterers but finds its greatest use 
in large smooth conductors" is found in Reference 12. 

Consider the RCS of the conesphere shown in Figure 13 computed using the DMFIE. 
Figures 14 and 15 show E-plane and H-plane monostatic RCS versus target aspect angle 
for the DMFIE and measurements.17 Note the large discrepancy between the E-plane 
computed results and the measurements in the angular region from approximately 0 — 60°, 
the illumination of the sphere portion of the conesphere. After measurement error was ruled 
out by the comparison of measurements from two different measurement facilities,18 the 
number of divisions per wavelength in the t and <f> coordinates were increased to ensure 
convergence of the numerical scheme. Figure 16 compares the E-plane DMFIE numerical 
results for 20, 30, and 80 divisions per wavelength. One sees the extremely slow convergence 
of numerical solution to the measured results. 

The E- and H-plane DMFIE RCS results for the conesphere with 20 segments per 
wavelength were compared to the CFIE, MFIE, and EFIE results from CICERO,19 a 
CFIE formulation for axially inhomogeneous bodies of revolution. The CICERO code uses 
triangular instead of pulse functions, which may account for the slight difference in the 
MFIE and DMFIE E-plane solutions. However, Figure 18 clearly demonstrates that the 
discrepancy is a result of the MFIE formulation, not the implementation of the DMFIE. 
The close agreement between the CFIE results and measurements suggests that the CFIE 
is the "correct" answer. The CFIE solution with 400 divisions per wavelength will be used 
as the "exact" reference solution. 

12Poggio, A.J., and Miller, E.K. (1987) Solution of Three-Dimensional Scattering Problems, in Computer 
Techniques for Electromagnetics, Mittra, R., ed., Springer-Verlag, p. 168. 

13Sadasiv, M.R., Wilton, D.R., and Glisson, A.W. (1982) Electromagnetic Scattering by Surfaces of Arbitrary 
Shape, IEEE Trans. Antennas PropagaL, AP-30:409-418. 

14 Glisson, A.W.,and Wilton, D.R., (1980) Simple and Efficient Methods for Problems of Electromagnetic Radiation 
and Scattering from Surfaces, IEEE Trans. Antennas PropagaL, AP-28:593-603. 

16 Sancer, M.I., McClary, R.L., and Glover, K.J. (1990) Electromagnetic Computation using Parametric Geometry, 
Electromagnetics, 10:85-103. 

16 Phone discussion with D. Wilton, University of Houston, Houston, TX. 
17 Larose, C. and Shantnu, M., of David Florida Laboratory, Canadian Space Agency, Ottawa, Ontario, performed 

the RCS measurements. One measurement was performed from 0 - 360° in aspect angle, but the symmetry of the 
conesphere allows the measurement data from 180 - 360° to be plotted from 0 - 180° aspect angle 

18 Wing, R. and Cote, M., of Rome Laboratory, Hanscom AFB, MA, performed a second set of measurements on 
the conesphere. 

19 Putnam, J.M. and Medgyesi-Mitschang, L.N. (1987) Combined Field Integral Equation Formulation for Axially 
Inhomogeneous Bodies of Revolution, McDonnell Douglas Corporation Report No. QA003, Volume I: Final Technical 
Report, St. Louis, MO., Sandia National Laboratory Contract No. 33-4257. 
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Figure 13. Geometry for Conesphere. 

The amplitude and phase of the scattered field for the first three modes were 
calculated, individually and collectively, over our aspect angular range of 0 - 80° for the 
MFIE and CFIE using CICERO. Figures 20 to 29 show the comparison of these results 
for the different formulations.20 It was determined from these results that the zero order 
current mode is not properly modeled in the present DMFIE and MFIE formulations. This 
assumption was further verified by calculating the phase and amplitude of the currents 
for each mode at an incident angle of 20° with the CFIE solution. Figure 30 shows that at 
this incident angle only the zero and first order modes are significant contributors to the 
total current. The amplitude and phase of these two modes are shown in Figures 31-34 for 
the DMFIE, MFIE, and CFIE. 

Reference 15 states that the cells on the opposite faces of a thin structure can 
become so close that the calculation of the matrix element containing the cells can break 
down numerically and give erroneous answers to the MFIE. The presented numerical 
solution in Reference 15 is a finer integration of these cells. This information prompted 
the modification of the DMFIE program to allow finer integration of the self ring, that 
is when t = t', for the zero order mode, ^-directed current. The self ring patch is divided 
into a predetermined number of tiny segments that are individually integrated and then 
coherently summed to obtain the self ring value. Figure 35 shows that finer integration of 
the self ring has little effect on the DMFIE solution. The only visible difference in the five 
results is located at the deep null at approximately 15°. 

"This approach was suggested by J.M. Putnam of McDonnell Douglas Research Laboratories, St. Louis, MO. 
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Figure 14. Comparison of the E-Plane Monostatic RCS of Conesphere for the DMFIE 
and Measurements; ka = 6.36. 

Singularities of the tip of a circular cone have been documented by various 
authors.21,22,23 Reference 21 concentrates on the circular cone shown in Figure Al and 
is directly applicable to the conesphere problem. The static electromagnetic expression, 
explained in additional detail in Appendix A, was implemented for the self ring when the 
source point was at the tip patch and the field point up to twenty patches away on the 
cone portion of the conesphere. Figures 36-38 show the current and RCS, respectively, at 
an aspect angle of 20° for the implementation of this method and the CFIE. Figure 38 
shows no considerable improvement in the RCS. 

The next attempt at solving the problem was to use the exact tip current for a 
semi-infinite cone.24 From Reference 24, it was determined that the t—directed zero order 
mode current at the tip of the cone has a Spherical Bessel function j„(t) variation where 
t is the radial distance from the tip of the cone in wavelengths. The mathematical and 
numerical details are presented in Appendix B. The t—directed current for mode zero is 
now approximated by 

Jtt = D3v{t) (59) 

21 Van Bladel, J. (1983) Field singularities at the tip of a cone, Proc. IEEE, 71:901-902. 
22 DeSmedt, R. and Van Bladel, J. (1986) Fields at the tip of a metallic cone of arbitrary cross section, IEEE 

Trans. Antennas Propagat, 34:865-870. 
23 Jackson, J.D. (1975) Classical Electrodynamics, Wiley, New York, 2nd ed., pp. 94-102. 
24 Trott, K.D. (1986)  A High Frequency Analysis of Electromagnetic Plane Wave Scattering by a Fully Illuminated 

Perfectly Conducting Semi-Infinite Cone, Dissertation at Ohio State University, Columbus ,Ohio. 
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Figure 15. Comparison of the H-Plane Monostatic RCS of Conesphere for the DMFIE 
and Measurements; ka = 6.36. 

where D is some constant. The program was then modified to use a Spherical Bessel 
function variation for the i-directed current for the segment at the tip of the conesphere 
with a segment length that corresponds to the location of the first maximum of the 
Spherical Bessel function. Figures 39 and 40 show the comparison of the current from the 
modified DMFIE, MFIE, and CFIE. One sees the improvement in the current. Figure 41 
compares the original DMFIE, the modified DMFIE, the CFIE, and measurements. One 
now sees that the modified DMFIE, CFIE and measurements compare fairly well in the 

problem region. 
We find that the failure to accurately model the current near the tip affects not 

only the current near the tip, but also many wavelengths away from the tip. Therefore, 
the expression in Eq. (31) for the scattered magnetic field, which shows that the current 
within a quarter wavelength of the tip has little effect on the RCS, does not account for 
enough of the physics of the problem. The conclusion is that for the conesphere where the 
t-directed current near the tip for mode zero has a strong effect for many wavelengths 
away from the tip, and thus a strong effect on the RCS, accurate modeling of the current 

must be performed. 
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Figure 16. Comparison of the E-Plane DMFIE Monostatic RCS of Conesphere for 20, 
50, and 80 Divisions per Wavelength with Measurements; ka = 6.36. 
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Figure 17. H-Plane Monostatic RCS of Conesphere for the DMFIE, MFIE, EFIE, CFIE, 
and Measurements; ka = 6.36. 
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Figure 18. E-Plane Monostatic RCS of Conesphere for the DMFIE, MFIE, EFIE, CFIE, 
and Measurements; ka — 6.36. 
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Figure 19. E-Plane Monostatic RCS of Conesphere for the MFIE, CFIE, and 
Measurements with 400 i-Divisions per Wavelength; ka = 6.36. 
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Figure 20. Amplitude of the E-Plane Scattered Field of Conesphere for the MFIE and 
CFIE; ka = 6.36, mode zero. 
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Figure 21. Phase of the E-Plane Scattered Field of Conesphere for the MFIE and CFIE; 
ka = 6.36, mode zero. 
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Figure 22   Amplitude of the E-Plane Scattered Field of Conesphere for the MFIE and 
CFIE; ka = 6.36, mode one. 
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Figure 23. Phase of the E-Plane Scattered Field of Conesphere for the MFIE and CFIE; 
ka = 6.36, mode one. 

28 



20 

§10 1- 

% 
O 
CO 

5 

0 

5 
< 

<-15 
g-20 
CO 

-25 

-30 

"f          !           ! 1 

GFIE--I  
MFIE i—- 

■     s^^ 

\         ]/ 
\    /.           \ 

!/   ! 

/ 

/ i            i            i i 

0 10      20      30      40      50      60 
ASPECT ANGLE (deg) 

70      80 

Figure 24. Amplitude of the E-Plane Scattered Field of Conesphere for the MFIE and 
CFIE; ka = 6.36, mode two. 
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Figure 25. Phase of the E-Plane Scattered Field of Conesphere for the MFIE and CFIE; 
ka = 6.36, mode two. 
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Figure 26. Amplitude of the E-Plane Scattered Field of Conesphere for the MFIE and 
CFIE; ka = 6.36, modes zero and one. 
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Figure 27. Phase of the E-Plane Scattered Field of Conesphere for the MFIE and CFIE; 
ka = 6.36, modes zero and one 
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Figure 28. Amplitude of the E-Plane Scattered Field of Conesphere for the MFIE and 
CFIE; ka = 6.36, modes zero, one, and two. 

3 

2 

§ 1 

—   0 
111 
CO 

2-11-- 
Q_ 

-2 

-3 

I 1                      1        1, ....1  I - 

-GRE 
MFIE   

\\ \\ \\ \\ \\ "" \\  " \\ \\ \\ 
V 

.-u-...- 

\\ 
v U \ [  

n 
1       >l 

1 j- 

\ \ \ \   \ 

V 
:             \j v 

v \; \ ;\ 
\   \ 
\    \ \    \ 
\     \ \     \ 

I                  v 

\ 

) 

\ \ ; \ 
\    \ 
i     \ 
\    \ 
\    l 

\\ 
\\ 
\\ 

) 

\ \ 

\\ 
 \    f 

\  \ 
\ \ 

M 

l 
\| 

■ 

 "l            "i             i              i              r             i              i            i 

0        10      20      30      40      50      60      70      80 
ASPECT ANGLE (deg) 

Figure 29. Phase of the E-Plane Scattered Field of Conesphere for the MFIE and CFIE; 
ka = 6.36, modes zero, one, and two. 
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Figure 30   Amplitude of the E-Plane CFIE Solution Current for Conesphere; ka = 6.36, 
6t = 20°, all modes. 
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Figure 31. Amplitude of the E-Plane DMFIE, MFIE, and CFIE Solution Current for 
Conesphere; ka = 6.36, 9t = 20°, mode zero. 
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Figure 32. Phase of the E-Plane DMFIE, MFIE, and CFIE Solution Currents for 
Conesphere; ka = 6.36, 6t = 20°, mode zero. 
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Figure 33. Amplitude of the E-Plane DMFIE, MFIE, and CFIE Solution Currents for 
Conesphere; ka = 6.36, 9t = 20°, mode one. 
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Figure 34. Phase of the E-Plane DMFIE, MFIE, and CFIE Solution Currents for 
Conesphere; ka = 6.36, 0t = 20°, mode one. 
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Figure 35   E-Plane Monostatic RCS with DMFIE Using Finer Integration on Self-Ring 
for ^-Directed Current, Original DMFIE, and CFIE; ka = 6.36. 
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Figure 36. Amplitude of the E-Plane Modified DMFIE using tv Current Dependence, 
Currents of MFIE and CFIE Solutions for Conesphere; ka = 6.36, 0t = 20°, mode zero. 
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Figure 37. Phase of the E-Plane Modified DMFIE using tv Current Dependence, 
Currents of MFIE and CFIE Solutions for Conesphere; ka = 6.36, 6t = 20°, mode zero. 
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Figure 38. E-Plane Monostatic RCS for Conesphere for the Modified DMFIE using f 
Current Dependence, Original DMFIE, and CFIE; ka = 6.36. 
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Figure 39. Amplitude of the E-Plane Modified DMFIE using jv Current Dependence, 
Currents for MFIE and CFIE Solutions for Conesphere; ka = 6.36, 0t = 20°, mode zero. 
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Figure 40. Phase of the E-Plane Modified DMFIE using jv Current Dependence, 
Currents for MFIE and CFIE Solutions for Conesphere; ka = 6.36, 9t = 20°, mode zero. 
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Figure 41. E-Plane Monostatic RCS for Conesphere for the Modified DMFIE using jv 
Current Dependence, Original DMFIE, and CFIE; ka = 6.36. 
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Figure 42. Geometry for Right Circular Cone 

6.2    Numerical Implementation 

The original DMFIE code was modified to include the Spherical Bessel function 
dependence of the tip current. The code was automated so that the operator can at will, 
use this Spherical Bessel function calculation of the better tip current for tipped scatterers. 
A subroutine was included to find the maximum of the Spherical Bessel function and set 
the length of the first segment on the tip of the scatterer to this electrical length. This 
program was then used to compute the RCS of conespheres and right circular cones of 
various values of ka. 

Figure 42 shows the geometry and dimensions for the flat-backed right circular cone. 
In Figures 43-66, the RCS versus aspect angle for different electrical sized conespheres as 
well as flat-backed cones is presented. The CFIE results were computed with CICERO 
using 100 divisions per wavelength and the measurements performed as stated in Reference 
17. The original and modified DMFIE results used 20 divisions per wavelength. 

The results demonstrate that the flat-back cones seem to be less sensitive to the 
current at the tip of the cone than the conespheres for small cone half-angles. There is no 
difference between the two DMFIE results when the half-cone angle is greater than 15°, as 
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Figure 43. E-Plane Monostatic RCS for Conesphere for the Modified DMFIE using jv 
Current Dependence, Original DMFIE, and Measurements; ka = 5.38. 

is expected. The conespheres, as demonstrated previously, are extremely sensitive to the 
modeling of the mode zero current. 
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Figure 44. H-Plane Monostatic RCS for Conesphere for the Modified DMFIE using jv 
Current Dependence, Original DMFIE, and Measurements; ka = 5.38. 
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Figure 45. E-Plane Monostatic RCS for Conesphere for the Modified DMFIE using jv 
Current Dependence, Original DMFIE, and Measurements; ka = 5.87. 
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Figure 46. H-Plane Monostatic RCS for Conesphere for the Modified DMFIE using j„ 
Current Dependence, Original DMFIE, and Measurements; ka = 5.87. 
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Figure 47. E-Plane Monostatic RCS for Conesphere for the Modified DMFIE using j„ 
Current Dependence, Original DMFIE, and Measurements; ka = 6.86. 
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Figure 48. H-Plane Monostatic RCS for Conesphere for the Modified DMFIE using jv 
Current Dependence, Original DMFIE, and Measurements; ka = 6.86. 
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Figure 49   E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
r j„ Current Dependence, Original DMFIE, and Measurements; a = 1.18A, / = 4.33A, 

a = 15.26°. 
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Figure 50. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using j„ Current Dependence, Original DMFIE, and Measurements; a — 1.18A, / = 4.33A, 

a = 15.26°. 
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Figure 51. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and Measurements; a = 1.29A, / = 4.72A, 

a =15.26°. 
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Figure 52. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using % Current Dependence, Original DMFIE, and Measurements; a = 1.29A, / = 4.72A, 

a = 15.26°. 
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Figure 53. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using % Current Dependence, Original DMFIE, and Measurements; a= 1.39A, / = 5.11A, 

a = 15.26°. 
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Figure 54. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and Measurements; a = 1.39A, / = 5.11A, 

a = 15.26°. 
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Figure 55. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and Measurements; a = 1.5A, / = 5.51A, 

a = 15.26°. 
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Figure 56. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using > Current Dependence, Original DMFIE, and Measurements; a = 1.5A, I = 5.51A, 

a — 15.26°. 
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Figure 57   E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE using 
jv Current Dependence, Original DMFIE, and CFIE; a = 0.808A, / = 3.042A, a = 15°. 
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Figure 58. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE using 
jv Current Dependence, Original DMFIE, and CFIE; a = 0.808A, I = 3.042A, a = 15°. 
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Figure 59. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE using 
j„ Current Dependence, Original DMFIE, and CFIE; a = 1.342A, / = 4.921A, a = 16°. 
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Figure 60   H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE using 
jv Current Dependence, Original DMFIE, and CFIE; a = 1.342A, / = 4.921A, a = 16°. 
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Figure 61. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and CFIE; a = 1.71A, I = 5.0A, a = 20°. 
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Figure 62. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using 2v Current Dependence, Original DMFIE, and CFIE; a= 1.71A, I = 5.0A, a = 20°. 

0 40     60     80    100   120   140   160   180 
ASPECT ANGLE (deg) 

Figure 63. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and CFIE; a = 2.11 A, I = 5.0A, a = 25°. 
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Figure 64. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using j„ Current Dependence, Original DMFIE, and CFIE; a = 2.11 A, I = 5.0A, a = 25°. 
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Figure 65. E-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using jv Current Dependence, Original DMFIE, and CFIE; a = 2.5A, I = 5.0A, a = 30°. 
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Figure 66. H-Plane Monostatic RCS for Flat-Backed Cone for the Modified DMFIE 
using j„ Current Dependence, Original DMFIE, and CFIE; a = 2.5A, I = 5.0A, a = 30°. 
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7    CONCLUSIONS 

It was shown that the DMFIE eliminates the spurious resonances from the MFIE for 
plane wave scattering from bodies of revolutions. The results were excellent for as few as 
seven segments per wavelength for the right circular cylinder, using simple pulse basis and 

impulse testing functions. 
The reduction of total solution time of electrically large bodies of revolution by 

the FFT and CG method is clearly demonstrated. The solution times using Gaussian 
elimination were proportional to (d/A)3 for axial incidence for a scatterer with equal width 
and length, and proportional to (d/ A)4 for broadside incidence. For broadside incidence, the 
FFT reduced the matrix fill time from a (d/A)4 to a (d/A)3 log2(d/A) functional depentooe, 
and the use of the CG iterative method reduced the solution time from (d/A) to (d/A) . 
Therefore, the total computer time required for electrically large bodies of revolution 
is proportional to (d/A)3 for axial incidence and (d/A)3log2(d/A) for broadside incidence 
However, use of the FFT increased the amount of computer storage required from a (d/A; 

proportionality to a (d/A)3 proportionality. 
It was demonstrated that the MFIE and the original DMFIE do not correctly produce 

the dominant current for scatterers with narrow tips and therefore gave incorrect results 
for scatterers with narrow tips. By inserting the exact tip current near the tip of an infinite 
cone into the DMFIE computer program, the DMFIE was made to accurately ca culate 
the scattering from bodies with narrow tips. This allows the DMFIE to be applied_ to 
bodies of revolution with much narrower tips than the original DMFIE solution and thus 
increases the number of scatterers to which it can be applied. This improved solution for 
cone tips has been incorporated into the original DMFIE computer program in a way that 

is transparent to the user. 
Our future plans are to implement the dual-surface electric-field integral equation for 

perfectly conducting bodies-of revolution. The dual-surface electric-field integral equation 
would serve as an independent check on the solution to bodies of revo^7 and ^ 
allow us to compute the RCS from infinitesimally thin conductors for which the DMFIE 

cannot be applied. 
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Appendix A 
Dominant Term of Electrostatic Tip Current Variation for the Cone 

The potential <f> is expanded in spherical harmonics, 

«^«.^^^»»{"S""' (AI) 
m=0    v 

The value of the subscript v is determined from the requirement that <f> vanish on the 
cone, which leads to the condition 

P™(cos0o)=O. (A2) 

Only the zero order mode (m = 0) is of interest as this is the mode that gives the incorrect 

current value. 
Van Bladel in Reference 21 presents two singularities, the electric and magnetic. The 

electric field of the electric singularity is not bounded as is the magnetic field. The outward 
normal crossed into the magnetic field results in a current in the ^-direction (uR direction 
in Reference 21). The radial distance from the tip of the cone is t (R in Reference 21). 
The current varies as tv where v is the degree of the Legendre function in Eq. (A2). 

The right-hand side of Eq. (13) for the ut component of Jl, J", can be written as 

j"(t, t', <f>') = Jave jd£ I* d<P'Bgt'rLb (A3) 

where 

g = (l+jkr), (A4) 

55 



R 

Figure Al. Geometry for Cone. 

r=(t'2 + t'tA + t2) (A5) 

A = {4sin2(a)sinV/2)-2} (A6) 

and 

B = 
-t sin2(a) COS(OJ) sin2(<ft'/2) 

2?r 
(A7) 

This assumes that the last patch on the tip of the cone is small and the current can be 
approximated by the electrostatic case. Letting the current on this patch be Jave times the 
length of the patch in the i-direction 

Therefore 

/•At rAt M/+1 

/     Jdt = a        tvdt = ——- 
Jo Jo v+l 

^+1      At 

0 
(A8) 
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{v+l)Jave 

(At)" 

and 

J = ^*"J- (Al°) 

Using Eq. (A10) in Eq. (A8) one obtains 

ft=^^ jdt>e r d4>'B9t'ri'5 (An) 

which now can be substituted into the right-hand side of Eq. (13). The value of v can be 
determined from the asymptotic formula 

u = W. (A12) 
!Ki) 
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Appendix B 
Dominant Term of Tip Current Variation for the Semi-Infinite Cone 

Starting with Eq. (4.48) in Reference 24 

4R(RO) = 

3jt 
2TT L p   v(u+l)Im„{T(u,m,ß) 

^7(7+l)Jm7\^(7,m,/3) 

,ft[,2)(fcd)  / S(v, m,ß) cos m0\/ ,,      .     >(feflo) | miy (cos g0) 
/+l)/m, IT(i/,m,^)sinm</»/rlo;+    fci?o   J      (sinfl0) (Bl) 

fr7
2)(fed) \ d ±2MfeÄ5)_rr(7,»i»f/3)ooBm0ir ?(M) + *)UP>öo) 

y(7+l)/n,7l5(7,m,)9)8inm^/\  7 fed     J dB  7 

where the geometry for the semi-infinite cone and the application of a point source are 
shown in Figures Bl and B2. The radial distance from the cone tip is R0 and the incident 
angle ß is chosen such that 0<ß<60 = iT-a, where a is the cone half-angle. We are 
solving only for the E-plane, t-directed current for mode zero. This reduces Eq. (Bl) to 

JSR(
R

O) - 

-Jk2~ 
2?r £^k^0'« 

,(2)/ w^}>(') 
where 

/                 {P-
1
(COS/5)(7 - l)h)-P}(cosß)} 

T(7,0, ß) = -1 ö  

(B2) 

(B3) 
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(x, y, z)=(r, 0, (j)) 

Figure Bl. Geometry for semi-infinite cone 23 

/( 07 = [°dß[P°(cose)]2sme 
Jo 

(B4) 

Q = 1 
(B5) 

and gamma is the value of the zeros for the solution of P7(cos0o) = 0. The source will be 
placed in the far field. This facilitates the use of the large argument form of the Hankel 
function given by 

limft)-»/+1 
-jz 

X 

(B6) 

and therefore 

lim [kRh?\kR)]'^f 
kR—>oo 

3-]kR 
(B7) 

The solution is now specialized to the case of plane wave incidence by moving the point 

source far away and letting 

Ei = jkZc 

e-jkd 

And 
(B8) 
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Figure B2. Geometry for application of dipole moment.23 

Applying this to Eq. (B2) 

JsR{Ko)-    Mo^    7(7+l)sin0o{d/d7[JR?(cos0o)]}   )' 
(B9) 

The numerical solution of Eq. (B9) requires the evaluation of Eq. D.15 in Reference 24, a 
recursion relationship for Legendre polynomials, at m = 0,6 — ß, and v — 7, yielding 

dD,      _.      (7+ l)P7+1(cos/3) - (7+ l)P7(cos/3) 
—P„(cos/3) = r-= • 
d/3 sin/3 

(BIO) 

Differentiating Eq.(D.13) in Reference 24, an integral equation representation for the 
associated Legendre polynomial, with respect to gamma and evaluating at m = 0,9 = 60, 
and v = 7, is also necessary for the evaluation of Eq. (B9) and results in 

d v(      ^      V5  [° -Bin[(7 + .5)s] 
— f^COStfoj-    ^   JQ    (cos:c_cosö)(.5) dx. (Bll) 

The substitution of Eqs. (BIO) and (Bll) into Eq. (B9) facilitates its numerical evaluation. 
The first zero can be determined from Eq. (A12), tables25 or computer programs. The 

third approach was used for a cone half-angle a of 12.5° resulting in u0 = 0.226, v\ = 1.326, 

25 Hall, R.N. (1949) The application of non-integral Legendre functions to potential problems, Journal of Applied 
Physics, 20:925-931. 
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Figure B3. Amplitude of the E-Plane Current From the Semi-Infinite Cone Formulation 
for Three Zeros and CFIE Solution for Conesphere for an Arc Length of Three 

Wavelengths; ka = 6.36, $t = 20°. 

and u2 = 2.415. Figs. B3 and B4 show the current that results using the first three values of 
v in Eq. (B9) compared with the CFIE solution of the conesphere at a — 12.5 and 6t = 20°. 
The semi-infinite solution using three zeros is the best fit to the CFIE at a distance of 
approximately one-half wavelength from the tip of the body. It would seem that one should 
use this solution, but further investigation shows that Eq. (B9) for multiple values of v is 
a function of cone and incident angles with a complex phase. This requires the use of only 
one v in solving Eq. (B9) and Figure B4 shows the agreement to be acceptable to the first 
maximum of the current. 
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Figure B4. Amplitude of the E-Plane Current From the Semi-Infinite Cone Formulation 
for Three Zeros and CFIE Solution for Conesphere for an Arc Length of One-Half 

Wavelength; ka = 6.36, dt = 20°. 
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Appendix C 
First Maximum of Spherical Bessel Function 

The need for the maximum of the Spherical Bessel function jv{z) was demonstrated 
in Appendix B. There are a number of available schemes to calculate the value of this 
function. We chose one that was computationally fast and easy to implement. We decided 
to use the series representation of Ju(z)2e where 

j(z) = (-yys (~*2/4)fc (Cl) 

and 

Jn(z) = y|0„+l/2(*). (C2) 

Taking the first two terms of the series, we have 

Jn(z) = ty{V+l,i)yte\r{u+1.5) ~ 4I> + 2.5)J" (C3) 

After some algebraic reduction 

f zv z{v+2) \ 
Jn(z) = v^| 2^+l)T(v + 1.5) ~ I> + 2.5)2(-+3) J ' (    ' 

The derivative of jn(z) is defined as 

26 Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Panctions, NBS 
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„zC-D {u + 2)zW\_\ (C5) 

/„(*) - V^r| 2("+1)I> + 1.5)     r(i/ + 2.5)2(t/+3) 

Set /„(JZ) equal to zero and solve for z to get 

z = 
T(u + 2.b)Au (C6) 

(i/ + 2)r(i/ + i.5) 

where 2 is the radial distance in wavelengths from the cone tip for our case. 
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Force Command, Control, Communications and Intelligence (C3I) activities 

for all Air Force platforms. It also executes selected acquisition programs 
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areas of competence is provided to ESD Program Offices (POs) and other 

ESD elements to perform effective acquisition of C3I systems. In addition, 

Rome Laboratory's technology supports other AFSC Product Divisions, the 

Air Force user community, and other DOD and non-DOD agencies.   Rome 

Laboratory maintains technical competence and research programs in areas 
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and software producibility, wide area surveillance/sensors, signal proces- 

sing, solid state sciences, photonics, electromagnetic technology, super- 
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